ORGANIC CHEMISTRY

DPP No. 10

Total Marks: 31

Max. Time: 31 min.

Topic: Acid and Basic Strength

Type of Questions		M.M., Min.
Single choice Objective ('-1' negative marking) Q.1 to Q.4	(3 marks, 3 min.)	[12, 12]
Comprehension ('-1' negative marking) Q.5 to Q.6	(3 marks, 3 min.)	[6, 6]
True or False (no negative marking) Q.7 & Q.8	(2 marks, 2 min.)	[4, 4]
Short Subjective Questions ('-1' negative marking) Q.9 to Q.11	(3 marks, 3 min.)	[9, 9]

- 1. Which order of acidic strength is incorrect
 - (A) CF₃COOH > CCI₃COOH > CHCI₃COOH > NO₂CH₂COOH > N = C CH₂COOH > F—CH₂COOH
 - (B) F—CH,COOH > CI—CH,COOH > BrCH,COOH > HCOOH > CI—CH,CH,COOH > C,H,COOH
 - (C) C_kH_kCOOH > C_kH_kCH_kCOOH > CH_kCOOH > CH_kCH_kCOOH
 - (D) $CH_2 = CH COOH < CH_3 CH_2 COOH$
- 2. The correct order of ease of deprotonation of labelled H–atoms is:

$$^{4}_{\text{HOOC}}$$
 $^{2}_{\text{SO}_{3}\text{H}}$ $^{2}_{\text{CH}_{2}\text{CHO}}$ $^{3}_{3}$ (B) 1 >

(A) 1 > 3 > 2 > 4

(B) 1 > 2 > 3 > 4

(C) 1 > 4 > 2 > 3

- (D) 1 > 3 > 4 > 2
- **3.** Observe the following reaction sequence.

The acidity order will be

- (A) $HC = CH > CH_3OH > CH_3COOH > CH_3SO_3H$. (B) $CH_3SO_3H > CH_3COOH > CH_3OH > HC = CH$.
- (C) $CH_2COOH > CH_2SO_2H > CH_2OH > HC \equiv CH$. (D) $CH_2SO_2H > CH_2COOH > HC \equiv CH > CH_2OH$.
- **4.** Give correct order of relative stabilites of following resonating structures :

Comprehension

Observe the following reaction and answer the following questions

5. The product 'R' is

(A)
$$Ph - C = C = C - H$$

 OH OH

- (B) Ph C CH = C OH
- (D) Ph C = CH C HOH O

6. The structure of Q₁ is

(A)
$$Ph - C = CH - C - H$$

(B) Ph - C = C = C - H

(D)
$$Ph - C - CH - C - H$$

True/ False:

7.

- 8. Furan-2-carboxylic acid COOH is more acidic than pyrrole-2-carboxylic acid COOH
- 9. Explain why will tautomerise but will not ?
- 10. Cis and trans-4-tert-butyl-2-methyl cyclohexanone are interconverted by base treatment. Explains why?
- 11. Compound 'X' is acyclic and shows keto enol tautomerism (significant enol content). It is least molecular weight sweet smelling chiral compound with one 'D' atom which shows positive 2,4-DNP & neutral FeCl₃ test. Calculate its molecular weight.

Answer Key

DPP No. #10

(B)

1. (D)

2. (C)

3.

4.

(B)

(D)

5.

6. (C)

9.

7. True

8. True

1997

Enol of second is antiaromatic.

11. Molecular weight = [103]

Hints & Solutions

DPP No. #10

Acidic strength order is -SO₃H > COOH > -CH₂ - NO₂ > -CH₂CHO

4.

$$CH_2 = CH - CI$$
(I)

$$CH_2 - CH = CI$$

non polar st.

octet of carbon is incomplete

octet of carbon is complete

- Oxygen is more electronegative than nitrogen hence stabilises the carboxylate anion better.
- 9. Enol of second is antiaromatic.
- 10. Because of enolisation

$$Me_3C$$
 CH_3
 H
 H
 H
 Me_3C
 CH_3
 H
 Me_3C
 CH_3
 Me_3C
 CH_3
 Me_3C
 CH_3
 Me_3C
 CH_3
 CH_3

11.

Molecular weight = [103]

