ORGANIC CHEMISTRY ### DPP No. 10 **Total Marks: 31** Max. Time: 31 min. Topic: Acid and Basic Strength | Type of Questions | | M.M., Min. | |--|-------------------|------------| | Single choice Objective ('-1' negative marking) Q.1 to Q.4 | (3 marks, 3 min.) | [12, 12] | | Comprehension ('-1' negative marking) Q.5 to Q.6 | (3 marks, 3 min.) | [6, 6] | | True or False (no negative marking) Q.7 & Q.8 | (2 marks, 2 min.) | [4, 4] | | Short Subjective Questions ('-1' negative marking) Q.9 to Q.11 | (3 marks, 3 min.) | [9, 9] | - 1. Which order of acidic strength is incorrect - (A) CF₃COOH > CCI₃COOH > CHCI₃COOH > NO₂CH₂COOH > N = C CH₂COOH > F—CH₂COOH - (B) F—CH,COOH > CI—CH,COOH > BrCH,COOH > HCOOH > CI—CH,CH,COOH > C,H,COOH - (C) C_kH_kCOOH > C_kH_kCH_kCOOH > CH_kCOOH > CH_kCH_kCOOH - (D) $CH_2 = CH COOH < CH_3 CH_2 COOH$ - 2. The correct order of ease of deprotonation of labelled H–atoms is: $$^{4}_{\text{HOOC}}$$ $^{2}_{\text{SO}_{3}\text{H}}$ $^{2}_{\text{CH}_{2}\text{CHO}}$ $^{3}_{3}$ (B) 1 > (A) 1 > 3 > 2 > 4 (B) 1 > 2 > 3 > 4 (C) 1 > 4 > 2 > 3 - (D) 1 > 3 > 4 > 2 - **3.** Observe the following reaction sequence. The acidity order will be - (A) $HC = CH > CH_3OH > CH_3COOH > CH_3SO_3H$. (B) $CH_3SO_3H > CH_3COOH > CH_3OH > HC = CH$. - (C) $CH_2COOH > CH_2SO_2H > CH_2OH > HC \equiv CH$. (D) $CH_2SO_2H > CH_2COOH > HC \equiv CH > CH_2OH$. - **4.** Give correct order of relative stabilites of following resonating structures : #### Comprehension # Observe the following reaction and answer the following questions **5.** The product 'R' is (A) $$Ph - C = C = C - H$$ OH OH - (B) Ph C CH = C OH - (D) Ph C = CH C HOH O 6. The structure of Q₁ is (A) $$Ph - C = CH - C - H$$ (B) Ph - C = C = C - H (D) $$Ph - C - CH - C - H$$ #### True/ False: 7. - 8. Furan-2-carboxylic acid COOH is more acidic than pyrrole-2-carboxylic acid COOH - 9. Explain why will tautomerise but will not ? - 10. Cis and trans-4-tert-butyl-2-methyl cyclohexanone are interconverted by base treatment. Explains why? - 11. Compound 'X' is acyclic and shows keto enol tautomerism (significant enol content). It is least molecular weight sweet smelling chiral compound with one 'D' atom which shows positive 2,4-DNP & neutral FeCl₃ test. Calculate its molecular weight. # **Answer Key** **DPP No. #10** (B) 1. (D) 2. (C) 3. 4. (B) (D) 5. 6. (C) 9. 7. True 8. True 1997 Enol of second is antiaromatic. 11. Molecular weight = [103] ## **Hints & Solutions** #### **DPP No. #10** Acidic strength order is -SO₃H > COOH > -CH₂ - NO₂ > -CH₂CHO 4. $$CH_2 = CH - CI$$ (I) $$CH_2 - CH = CI$$ non polar st. octet of carbon is incomplete octet of carbon is complete - Oxygen is more electronegative than nitrogen hence stabilises the carboxylate anion better. - 9. Enol of second is antiaromatic. - 10. Because of enolisation $$Me_3C$$ CH_3 H H H Me_3C CH_3 H Me_3C CH_3 Me_3C CH_3 Me_3C CH_3 Me_3C CH_3 11. Molecular weight = [103]